Article ID Journal Published Year Pages File Type
1484463 Journal of Non-Crystalline Solids 2008 8 Pages PDF
Abstract
Elastic recoil detection and Rutherford backscattering spectrometry combined with the nuclear reaction analysis method have been applied for the determination of oxygen, hydrogen and carbon concentration depth profiles of aged p+-type porous Si layers of different low and medium porosities. The plan view and cross-section scanning electron microscopy images have provided with information about both the diameter and silicon skeleton structure of the pores. The concentration depth profiles reveal the existence of a non-homogeneous subsurface porous film several hundred nanometers thick for all the studied samples. Differences in the atomic composition among low and medium porosity layers and the possible origin of various impurities are discussed. The maximum H content in PSi has been observed at the depth of 200-600 nm, while the highest oxygen concentration is typical of 200 nm thick subsurface layers. The highest obtained ratio of H/Si atomic concentrations reaches the value of 2 for the PSi samples with porosity P of 66%, comparing to NH/NSi = 0.27 in the case of P = 25% PSi.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,