Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1484728 | Journal of Non-Crystalline Solids | 2008 | 5 Pages |
The correlation between micro-roughness, surface chemistry, and performance of crystalline Si/amorphous Si:H:Cl hetero-junction solar cells is discussed through a deposition study of amorphous Si:H:Cl (a-Si:H:Cl) films by rf plasma-enhanced chemical vapor deposition using a SiH2Cl2–H2 mixture. The degree of H- and Cl-termination on the growing surface determined the degree of micro-roughness at the p-type a-Si:H:Cl/intrinsic a-Si:H:Cl interface and solar cell performance. A higher degree of Cl-termination compared to H-termination was effective to suppress the micro-roughness at the growing surface and oxygen incorporation into the film, as well as chemical reduction of the intrinsic a-Si:H:Cl layer during the underneath p-layer formation. The study showed that a-Si:H:Cl deposited from SiH2Cl2 is a potential material for c-Si hetero-junction solar cells with an intrinsic a-Si:H:Cl thin layer.