Article ID Journal Published Year Pages File Type
1485229 Journal of Non-Crystalline Solids 2007 9 Pages PDF
Abstract

Glass materials in the ZnO–Fe2O3–SiO2 system, containing zinc ferrite nanoparticles, were prepared by the sol–gel method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, AC- and DC-magnetization techniques. The gel samples, dried at 130 °C, were further heat treated in air at 500 and 800 °C. At 500 °C zinc ferrite and hematite nanoparticles, with an average size of approximately 24 nm, were precipitated in the brown and opaque 10ZnO–10Fe2O3–80SiO2 and in the ruby colored transparent 5ZnO–5Fe2O3–90SiO2 and 2.5ZnO–2.5Fe2O3–95SiO2 glass matrices. In the 5ZnO–5Fe2O3–90SiO2 sample the nanoparticles exhibited ferro or ferrimagnetic interactions combined with superparamagnetism with a blocking temperature of approximately 14 K. Heating at 800 °C seems to cause partial dissolution of the zinc ferrite and hematite particles in all the investigated compositions. Accordingly at 800 °C the 5ZnO–5Fe2O3–90SiO2 glass shows a paramagnetic behavior down to 2 K.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,