Article ID Journal Published Year Pages File Type
1485353 Journal of Non-Crystalline Solids 2007 7 Pages PDF
Abstract

A detailed microstructural analysis of amorphous silicon is performed via numerical modeling technique. Nanoporous paracrystalline models have been proposed. Intermixed nanocrystallites and nanovoids of various sizes and concentrations have been introduced into a continuous random network that was generated with a vacancy model. Using the conjugate gradient method, the structures have been relaxed by minimizing their total strain energy described by the anharmonic Keating model. The obtained nanoporous structures are energetically competitive with the voidless paracrystalline networks. Nanoporous models with large voids are energetically more favorable than those with small voids. The nanoporous paracrystalline model is less dense than the crystalline phase, contrary to the paracrystalline model. This density decreases with increasing the void size for a fixed void volume fraction. Nanoporous paracrystalline structures reproduce the experimental structure factor better than the paracrystalline network. They account for, in particular, the intense small-angle scattering observed for some a-Si samples. The paracrystallites form amorphous zones but with local and topological ordering neatly better than the surrounding matrix. Such structural heterogeneity gives so a satisfactory explanation of the nanoscale fluctuation electron microscopy data reported recently by Treacy and Gibson.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,