Article ID Journal Published Year Pages File Type
1486104 Journal of Non-Crystalline Solids 2006 12 Pages PDF
Abstract

The crystallization behavior of Zr65.0Al7.5Cu27.5 (at.%) metallic glass with 753 and 1053 K annealing treatment and its effect on oxidation resistance around the supercooled liquid region at 623 and 663 K was studied. The crystalline phase of bct-Zr2Cu precipitates for the specimen annealed at 753 K was observed, while duplex structures of bct-Zr2Cu and Zr2Al formed in the specimen annealed at 1053 K. The oxidation resistance of the specimen depended on the amount of crystalline precipitates. Regardless of the exposure temperature, the annealed specimens showed higher oxidation resistance than the melt-spun one, especially for the specimen annealed at 1053 K. The formation of numerous crystalline phases of bct-Zr2Cu and Zr2Al from the matrix was responsible for improving the oxidation resistance due to their higher oxidation resistance and promotion of the development of Al2O3 and oxides of copper. The oxide constituents of the amorphous alloy after long exposure depended on the temperature. The oxide was composed of a large amount of CuO, some tetragonal and monoclinic-ZrO2 and a minor amount of Cu2O as well as a slight amount of Al2O3 for the melt-spun specimen during exposure at 623 K. Under the 663 K exposure, however, the oxide state of Cu3+ in the scale was also detected.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,