Article ID Journal Published Year Pages File Type
1486329 Journal of Non-Crystalline Solids 2006 5 Pages PDF
Abstract

Raman backscattering and hydrogen effusion measurements were performed on compensated, highly P- and B-doped laser crystallized polycrystalline silicon. From hydrogen effusion spectra the hydrogen chemical potential, μH, is determined as a function of hydrogen concentration, which can be related to the hydrogen density-of-states distribution. Interestingly, hydrogen bonding is affected by doping of the amorphous starting material. Below the hydrogen transport states, four peaks are observed in the hydrogen density-of-states at 2.0, 2.2, 2.5 and 2.8 eV. The latest peak is not observed in B-doped samples. The hydrogen effusion results will be correlated with the results obtained from Raman backscattering measurements.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,