Article ID Journal Published Year Pages File Type
1486355 Journal of Non-Crystalline Solids 2006 4 Pages PDF
Abstract

Hopping transport through heterostructure solar cells based on B-doped crystalline silicon wafers with highly P-doped hydrogenated amorphous silicon emitters with different thicknesses is investigated at T = 10 K with pulsed electrically detected magnetic resonance. The measurements show that transport is dominated by conduction band tail states (g ≈ 2.0046) with a distribution of their mutual coupling strength. The signal intensity correlates to the sample thickness and the g-factors do not exhibit an anisotropy which suggests that transport is still dominated by bulk properties of amorphous silicon. In addition, two broad P-donor hyperfine satellites can be detected. Influences of interface defects such as Pb-like states known from silicon dioxide interfaces are either suppressed by the high Fermi energy at the interface or not present.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,