Article ID Journal Published Year Pages File Type
1486609 Journal of Non-Crystalline Solids 2005 5 Pages PDF
Abstract

A novel amorphous zirconium carbon nitrides (ZrCN) material was deposited by reactive sputtering using a ZrC target (99.5% in purity) in a mixture of Ar and N2 ambient. The microstructure and mechanical properties of the ZrCN films were examined with respect to N2 pressure. For thermal stability characterization, the stacked structure of Cu/ZrCN/Si was subsequently subject to thermal treatments at temperatures from 300 °C to 900 °C for 30 min in a vacuum tube with the base pressure of 3 × 10−5 torr. The results show that the amorphous ZrCN films exhibit superior mechanical properties to either ZrN or ZrC including hardness and elastic modulus. The stacked samples were shown to be thermally stable up to about 800 °C from Auger electron spectroscopy and X-ray diffraction, where the ZrCN still remains its amorphous phase. The device completely fails at 900 °C and the mechanism is discussed in the paper.

Keywords
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,