Article ID Journal Published Year Pages File Type
1491131 Materials Research Bulletin 2010 7 Pages PDF
Abstract

A simple wet chemical method has been developed to synthesize selenium nanoparticles (size 100–200 nm), by reaction of sodium selenosulphate precursor with different vinyl monomers, such as acrylamide, N,N′-dimethylene bis acrylamide, methyl methacrylate, sodium acrylate, etc., in aqueous medium, under ambient conditions. Polyvinyl alcohol has been used to stabilize the selenium nanoparticles. Average size of the synthesized selenium nanoparticles can be controlled by adjusting concentration of both the precursors and the stabilizer. Rate of the reaction as well as size of the resultant selenium nanoparticles have been correlated with the functional groups of the different monomers. UV–vis optical absorption spectroscopy, X-ray diffraction, energy dispersive X-rays, differential scanning calorimetry, atomic force microscopy, scanning electron microscopy and transmission electron microscopy techniques have been employed to characterize the synthesized selenium nanoparticles. Gas chromatographic analysis of the reaction mixture established the non-catalytic role of the vinyl monomers, which were found to be consumed during the course of the reaction.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,