Article ID Journal Published Year Pages File Type
15207 Computational Biology and Chemistry 2012 6 Pages PDF
Abstract

In proteins, the number of interacting pairs is usually much smaller than the number of non-interacting ones. So the imbalanced data problem will arise in the field of protein–protein interactions (PPIs) prediction. In this article, we introduce two ensemble methods to solve the imbalanced data problem. These ensemble methods combine the based-cluster under-sampling technique and the fusion classifiers. And then we evaluate the ensemble methods using a dataset from Database of Interacting Proteins (DIP) with 10-fold cross validation. All the prediction models achieve area under the receiver operating characteristic curve (AUC) value about 95%. Our results show that the ensemble classifiers are quite effective in predicting PPIs; we also gain some valuable conclusions on the performance of ensemble methods for PPIs in imbalanced data. The prediction software and all dataset employed in the work can be obtained for free at http://cic.scu.edu.cn/bioinformatics/Ensemble_PPIs/index.html.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► Two ensemble methods are proposed to overcome the imbalanced problem in PPIs. ► These methods combine cluster-based under-sampling technique and fusion classifiers. ► Analysis the performance of these methods with different based classifiers. ► A web server has been developed in an easy-to-use manner.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , ,