Article ID Journal Published Year Pages File Type
15300 Computational Biology and Chemistry 2009 4 Pages PDF
Abstract

Detection of foldable subunits in proteins is an important approach to understand their evolutions and find building motifs for de novo protein design. Using united-residue model, we simulated the folding of a six-helix protein with a length of 120 amino acids (C-terminal domain of Ku86). The folding behaviors, structural topology and sequence repetition of this protein all suggest that it may have a two-fold quasi-repetition or symmetry in its sequence and structure. Therefore, we simulated the folding of its two halves (1–60 and 61–120 amino acids) and find that they can fold into native conformations independently. It is also found that their folding behaviors are very similar to other three-helix bundles. This suggests that this protein may be divided into two foldable halves.

Keywords
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,