Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
15370 | Computational Biology and Chemistry | 2008 | 4 Pages |
Abstract
Optimally weighted fuzzy k-nearest neighbors (OWFKNN) algorithm has been used to predict proteins’ subcellular locations based on their amino acid composition, in this paper. The datasets used consists of two species which are 997 prokaryotic and 2427 eukaryotic protein sequences. The overall prediction accuracy achieved is about 88.5% for prokaryotic sequences and 86.2% for eukaryotic sequences in a jackknife test. Compared to other algorithms developed for the prediction of protein subcellular location, OWFKNN gives very satisfying results. Therefore, OWFKNN can be used as an alternative method to predict protein localization.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Efendi Nasibov, Cagin Kandemir-Cavas,