Article ID Journal Published Year Pages File Type
1544543 Physica E: Low-dimensional Systems and Nanostructures 2014 5 Pages PDF
Abstract
A complete quantum addition machine is presented and compared with methods employing unitary transformations first. A quantum half-adder circuit shown earlier can be implemented into each cell of a 1D cellular automaton. An electric Aharonov-Bohm effect version of the quantum circuit is used to illustrate this implementation. Whatever a quantum Turing machine can achieve is realized in the cellular automata architecture we propose here. The coherence requirement is limited to one cell area. The magnetic flux needed is 0.1Φ0, corresponding to 0.414 mT for a ring area of 1 square micron or an electric potential of 0.414 mV at 1 ps with an energy dissipation of 0.041 eV per iteration.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,