Article ID Journal Published Year Pages File Type
1564990 Journal of Nuclear Materials 2014 6 Pages PDF
Abstract
Diffusion of interstitial atomic hydrogen in erbium oxide (Er2O3) was investigated using density functional theory (DFT) and molecular dynamics (MD) methods. Hydrogen diffusivity in bulk, on (0 0 1) surface, and along Σ13 (4-3-1)/[1 1 1] symmetric tilt grain boundaries (GBs) were evaluated in a temperature range of 673-1073 K, as well as hydrogen diffusion barriers. It was found that H diffusion shows the faster on (0 0 1) surface than along GBs and in bulk. Also, energy barrier of H diffusion in bulk estimated by DFT and MD methods is somewhat higher than that along GBs evaluated in the experiments. This suggests that H diffusion in Er2O3 coatings depends on GBs rather than bulk. In addition, with a correction of GB density, the simulated diffusivity along GBs in MD simulations is in good agreement with the experimental data within one order of magnitude. The discrepancy of H diffusivity between the experiments and the simulations should be reduced by considering H concentration, H diffusion direction, deviations of the initial configuration, vacancy defects, etc.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , ,