Article ID Journal Published Year Pages File Type
1565064 Journal of Nuclear Materials 2015 10 Pages PDF
Abstract
The fundamental mechanisms underlying the superior radiation tolerance properties of oxide-dispersion-strengthened ferritic steels and nanostructured ferritic alloys are poorly understood. Thin film heterostructures of Fe/Y2O3 can serve as a model system for fundamental studies of radiation damage. Epitaxial thin films of Y2O3 were deposited by pulsed laser deposition on 8% Y:ZrO2 (YSZ) substrates with (1 0 0), (1 1 0), and (1 1 1) orientation. Metallic Fe was subsequently deposited by molecular beam epitaxy. Characterization by X-ray diffraction and Rutherford backscattering spectrometry in the channeling geometry revealed a degree of epitaxial or axiotaxial orientation for Fe(2 1 1) deposited on Y2O3(1 1 0)/YSZ(1 1 0). In contrast, Fe on Y2O3(1 1 1)/YSZ(1 1 1) was fully polycrystalline, and Fe on Y2O3(1 0 0)/YSZ(1 0 0) exhibited out-of-plane texture in the [1 1 0] direction with little or no preferential in-plane orientation. Scanning transmission electron microscopy imaging of Fe(2 1 1)/Y2O3(1 1 0)/YSZ(1 10) revealed a strongly islanded morphology for the Fe film, with no epitaxial grains visible in the cross-sectional sample. Well-ordered Fe grains with no orientation to the underlying Y2O3 were observed. Well-ordered crystallites of Fe with both epitaxial and non-epitaxial orientations on Y2O3 are a promising model system for fundamental studies of radiation damage phenomena. This is illustrated with preliminary results of He bubble formation following implantation with a helium ion microscope. He bubble formation is shown to preferentially occur at the Fe/Y2O3 interface.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , , , ,