Article ID Journal Published Year Pages File Type
1565081 Journal of Nuclear Materials 2014 8 Pages PDF
Abstract

This study investigates the effects of high fluence neutron irradiation on the mechanical properties of two types of cladding materials fabricated using the submerged-arc welding and electroslag welding methods. The tensile tests, Charpy impact tests, and fracture toughness tests were conducted before and after the neutron irradiation with a fluence of 1 × 1024 n/m2 at 290 °C. With neutron irradiation, we could observe an increase in the yield strength and ultimate strength, and a decrease in the total elongation. All cladding materials exhibited ductile-to-brittle transition behavior during the Charpy impact tests. A reduction in the Charpy upper-shelf energy and an increase in the ductile-to-brittle transition temperature was observed with neutron irradiation. There was no obvious decrease in the elastic–plastic fracture toughness (JIc) of the cladding materials upon irradiation with high neutron fluence. The tearing modulus was found to decrease with neutron irradiation; the submerged-arc-welded cladding materials exhibited low JIc values at high temperatures.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , ,