Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1565206 | Journal of Nuclear Materials | 2014 | 8 Pages |
The purpose of this study is to model the interaction between austenitic stainless steel and liquid gallium at a high temperature to predict the weight loss for potential application as a target material or coolant in an advanced nuclear system. In the present study, models for liquid gallium corrosion with austenitic stainless steel are studied and discussed. This paper presents a mathematical analysis of liquid gallium corrosion, especially the surface recession due to solubility and diffusion, in a static cell, as well as the mass exchange at the liquid/solid interface. Also, a mathematical analysis of liquid gallium alloy (Ga–Sn–Zn) corrosion is conducted in order to study its effect on the diffusion behavior after the addition of alloying elements. The results show that the predicted corrosion behavior agrees well with experimental data and the weight loss of austenitic stainless steel are significantly reduced in gallium alloy compared to those in pure gallium at high temperatures.