Article ID Journal Published Year Pages File Type
1565324 Journal of Nuclear Materials 2014 8 Pages PDF
Abstract
Tensile stress-strain relationship of a rolled Zircaloy-4 (Zr-4) plate was examined in situ using a neutron diffraction method at room temperature (RT, 25 °C) and an elevated temperature (250 °C). Variations of lattice strains were obtained as a function of macroscopic bulk strains along prismatic (101¯0), basal (0 0 0 2) and pyramidal (101¯1) planes in the hexagonal close-packed structure of the Zr-4. The mechanisms of strain responses in these three major planes were simulated using elastic-plastic self-consistent (EPSC) model based on Hill-Hutchinson method, thus the inter-granular stresses and deformation systems of each individual grain under loading were obtained. Results show that there is a good agreement between the EPSC modeling and neutron diffraction measurements in terms of macroscopic stress-strain relationship and lattice strain evolutions of the planes at RT. However, there is a slight discrepancy in the lattice strains obtained from the EPSC modeling and neutron diffraction when the specimen was deformed at 250 °C. Analysis of grain structure and texture obtained using electron back-scattered diffraction suggests that dynamic recovery process is significant during the tensile deformation at the elevated temperature, which was not considered in the simulation.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , , , , , ,