Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1565592 | Journal of Nuclear Materials | 2013 | 6 Pages |
The thermal conductivities of UO2+x, (U0.8,Pu0.2)O2−x and UO2 (induced Schottky defects) have been investigated by non-equilibrium molecular dynamics (NEMD) simulation from the viewpoints of the oxygen-to-metal ratio (O/M ratio), temperature, and point defect concentration. In the NEMD simulation, the thermal conductivity was determined by the temperature gradient and heat flux using Fourier’s law. The calculated thermal conductivity decreased with increasing temperature and defect concentration i.e. excess oxygen and oxygen vacancy concentrations. The calculated thermal conductivity decreased with increase of the deviation x from stoichiometry and number of defects. By comparing the hyperstoichiometric and hypostoichiometric oxides, it was found that the effect of Pu3+ and oxygen vacancy on the thermal conductivity was larger than that of U5+ and excess oxygen. Further, the cuboctahedral defect clusters were observed in the hyperstoichiometric UO2+x supercell.