Article ID Journal Published Year Pages File Type
1566207 Journal of Nuclear Materials 2012 18 Pages PDF
Abstract
To reach creep properties similar to those of AISI 316, different dispersions and methods were tested: internal oxidation (that was not conclusive), and the direct mixing of metallic and oxide powders (Al2O3, MgO, ZrO2, TiO2, ZrSiO4) followed by pressing, sintering, and extrusion. The compression and extrusion parameters were determined: extrusion as hollow at 1050 °C, solution annealing at 1050 °C/15 min, cleaning, cold drawing to the final dimensions with intermediate annealings at 1050 °C, final annealing at 1050 °C, straightening and final aging at 800 °C. The choice of titania and yttria powders and their concentrations were finalized on the basis of their out-of-pile and in-pile creep and tensile strength. As soon as a resistance butt welding machine was developed and installed in a glove-box, fuel segments with PuO2 were loaded in the Belgian MTR BR2. The fabrication parameters were continuously optimized: milling and beating, lubrication, cold drawing (partial and final reduction rates, temperature, duration, atmosphere and furnace). Specific non-destructive tests (ultrasonic and eddy currents) were also developed. In-pile creep in argon and in liquid sodium was deeply studied on pressurized segments irradiated up to 75 dpaNRT. Finally two fuel assemblies cladded with such ODS alloys were irradiated in Phenix to the max dose of 90 dpa. Creep deformation and swelling were limited but the irradiation-induced embrittlement became acute. The programme was stopped shortly after the Chernobyl disaster, before the embrittlement problem was solved.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
,