Article ID Journal Published Year Pages File Type
1566271 Journal of Nuclear Materials 2012 8 Pages PDF
Abstract
Hot isostatic pressing (HIP) is a key technology used to fabricate a first wall with cooling channels for the fusion blanket system utilizing a reduced-activation ferritic/martensitic steel. To qualify the HIPped components, small specimen test techniques are beneficial not only to evaluate the thin-wall cooling channels containing the HIP joint but also to use in neutron irradiation studies. This study aims to develop the torsion test method with special emphasis on providing a reasonable and comprehensive method to determine interfacial shear properties of HIP joints during the torsional fracture process. Torsion test results identified that the torsion process shows yield of the base metal followed by non-elastic deformation due to work hardening of the base metal. By considering this work hardening issue, we propose a reasonable and realistic solution to determine the torsional yield shear stress and the ultimate torsional shear strength of the HIPped interface. Finally, a representative torsion fracture process was identified.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , ,