Article ID Journal Published Year Pages File Type
1566354 Journal of Nuclear Materials 2012 10 Pages PDF
Abstract

An atomistic Monte Carlo model parameterised on electronic structure calculations data has been used to study the formation and evolution under irradiation of solute clusters in Fe–MnNi ternary and Fe–CuMnNi quaternary alloys. Two populations of solute rich clusters have been observed, which can be discriminated by whether or not the solute atoms are associated with self-interstitial clusters. Mn–Ni-rich clusters are observed at a very early stage of the irradiation in both modelled alloys, whereas the quaternary alloys contain also Cu-containing clusters. Mn–Ni-rich clusters nucleate very early via a self-interstitial-driven mechanism, earlier than Cu-rich clusters; the latter, however, which are likely to form via a vacancy-driven mechanism, grow in number much faster than the former, helped by the thermodynamic driving force to Cu precipitation in Fe, thereby becoming dominant in the low dose regime. The kinetics of the number density increase of the two populations is thus significantly different. Finally the main conclusion suggested by this work is that the so-called late blooming phases might as well be neither late, nor phases.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , ,