Article ID Journal Published Year Pages File Type
1566551 Journal of Nuclear Materials 2011 6 Pages PDF
Abstract
Calcined solid radioactive waste (incinerator slag) surrogate and either Na2Si2O5 or Na2B4O7 (borax) at various mass ratios were melted in silicon carbide crucibles in a resistive furnace at temperatures of up to 1775 K (slag without additives). Portions of the melts were poured onto a metal plate; the residues were slowly cooled in turned-off furnace. Both quenched and slowly cooled materials were composed of the same phases. At high slag contents in silicate-based materials nepheline and britholite were found to be major phases. Britholite formed at higher slag content (85 wt.%) became major phase in the vitrified slag. In the system with borax at low slag contents (25 and 50 wt.%) material are composed of predominant vitreous and minor calcium silicate larnite type phase Ca2SiO4 where Ca2+ ions are replaced by different cations. The materials containing slag in amount of 75 wt.% and more are chemically durable. The changes in the structure of anionic motif of quenched samples depending on slag loading were studied by IR spectroscopy.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , ,