| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 1566622 | Journal of Nuclear Materials | 2011 | 4 Pages |
The radiation-hardening of oxide dispersion strengthened (ODS) alloys was examined using ion irradiation and nano-indentation. In this work, three ODS steels were irradiated in the TIARA facility at JAEA with 10.5 MeV Fe3+ ions up to a dose of 20 dpa at 250 and 380 °C. Micro-hardness measurements were carried out on the ion-irradiated specimens with ultra-low load indention. Micro-structures were investigated by transmission electron microscopy (TEM) to examine the contribution of various types of defects to the radiation-hardening. All three steels showed increases in the hardness after the ion irradiation, and F82H-ODS showed the lowest radiation-hardening, which suggests that F82H-ODS has the better radiation resistance. Small amounts of particle dissolution was also confirmed in all of the steels after the irradiation.
