Article ID Journal Published Year Pages File Type
1566653 Journal of Nuclear Materials 2011 6 Pages PDF
Abstract

High purity chemically vapor-deposited (CVD) silicon carbide (SiC) and near-stoichiometric SiC fiber, chemically vapor-infiltrated (CVI) SiC matrix composite were evaluated following neutron irradiation to ∼28 dpa at 300 and 650 °C and to ∼41 dpa at 800 °C, respectively. The irradiated swelling, thermal conductivity, and elastic modulus indicated no additional changes in these properties at high fluences after saturation at low fluences. With a statistically meaningful sample population, no change in flexural strength of CVD SiC was observed after 300 °C irradiation. A slight decrease in strength was observed after 650 °C irradiation but was attributed to an experimental artifact; specifically, a reaction between samples and the capsule components. The Hi-Nicalon™ Type-S, CVI SiC composite retained the pre-irradiation strength and the non-linear fracture mode. The electrical resistivity measurement revealed a relatively minor effect of irradiation. Overall, irradiation-insensitivity of the high purity SiC ceramics and composite to neutron irradiation to doses 30–40 dpa at temperatures 300–800 °C was demonstrated.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , ,