Article ID Journal Published Year Pages File Type
1567081 Journal of Nuclear Materials 2011 15 Pages PDF
Abstract

Iodine-induced stress corrosion cracking (I-SCC) is a recognized factor for fuel-element failure in the operation of nuclear reactors requiring the implementation of mitigation measures. I-SCC is believed to depend on certain factors such as iodine concentration, oxide layer type and thickness on the fuel sheath, irradiation history, metallurgical parameters related to sheath like texture and microstructure, and the mechanical properties of zirconium alloys. This work details the development of a thermodynamics and mechanistic treatment accounting for the iodine chemistry and kinetics in the fuel-to-sheath gap and its influence on I-SCC phenomena. The governing transport equations for the model are solved with a finite-element technique using the COMSOL Multiphysics® commercial software platform. Based on this analysis, this study also proposes potential remedies for I-SCC.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , ,