Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1567580 | Journal of Nuclear Materials | 2009 | 4 Pages |
Abstract
A new version of the B2SOLPS5.0 transport code, which is free from numerical problems in the barrier region, has been used to simulate H-mode shots from ASDEX-Upgrade and MAST. The radial electric field inside the edge transport barrier and in the pedestal region is close to the neoclassical prediction. The shear of poloidal E→×B→ drift at the inner side of the barrier is close to the value before the transition, while inside the barrier it is significantly larger. It is demonstrated that to match the experimental density and temperature radial profiles the drop in the diffusion coefficient within the barrier should be significantly larger than the drop in the electron heat conductivity.
Related Topics
Physical Sciences and Engineering
Energy
Nuclear Energy and Engineering
Authors
V. Rozhansky, E. Kaveeva, P. Molchanov, I. Veselova, S. Voskoboynikov, D. Coster, G. Counsell, A. Kirk, S. Lisgo,