Article ID Journal Published Year Pages File Type
1567810 Journal of Nuclear Materials 2009 10 Pages PDF
Abstract

Room temperature elastic and plastic properties of a single phase βZr have been studied by in-situ neutron diffraction compression testing. The measured macroscopic Young’s modulus is ∼60 GPa and the yield strength is ∼500 MPa. Dislocation slip is the major mode of plastic deformation. An Elasto-Plastic Self-Consistent (EPSC) model was used to interpret the experimental results and was shown to be effective in extracting the single crystal properties from the polycrystalline data. The single crystal elastic constants of the β-phase are determined as: C11 = 145.9 ± 2.6 GPa, C12 = 117.4 ± 2.5 GPa and C44 = 29.8 ± 0.2 GPa. The calculated elastic modulus of 〈1 0 0〉, 〈1 1 0〉, 〈1 1 1〉, 〈2 1 1〉 and 〈3 1 0〉 directions was ∼41.2, 66.2, 82.9, 66.2 and 47.7 GPa, respectively. Pencil glide on the {110}, {112} and {123} planes was used in the EPSC model and gave a good simulation to the early part of the plastic deformation. The average β-phase strain is best represented by the peak average method, while in cases where only a limited number of diffraction peaks are available, the {211} grain family is a good candidate for estimation of the average β-phase strain.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , ,