Article ID Journal Published Year Pages File Type
1567884 Journal of Nuclear Materials 2009 4 Pages PDF
Abstract

The assessment of the primary survived defects rates in iron such as vacancies-interstitials pairs and simplest clusters have been performed for the IFMIF, fusion power plant and research reactor. This was achieved by a modified version of the NJOY code, when processing evaluated nuclear cross section file. The modifications accounted for the reduction of the available damage energy predicted by the standard NRT model by the surviving defects fractions. These fractions were picked-up from the molecular dynamics and binary collisions simulation results available in the literature. The number of primary survived and clustered defects in the α-iron irradiated in the high flux test module of IFMIF was estimated as 10 and 6 dpa/fpy or several times less than standard NRT estimates at the level of 30 dpa/fpy. The comparison with damages in iron calculated for irradiation in the first wall of fusion power plant gave however the same reduction factors, that supports the qualification of IFMIF as a fusion material irradiation facility.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , ,