Article ID Journal Published Year Pages File Type
1567993 Journal of Nuclear Materials 2009 10 Pages PDF
Abstract

Inert matrix fuels are an important component of advanced nuclear fuel cycles, as they provide a means of utilizing plutonium and reducing the inventory of ‘minor’ actinides. We examine the neutronic and thermal characteristics of MgO–pyrochlore (A2B2O7: La2Zr2O7, Nd2Zr2O7 and Y2Sn2O7) composites as inert matrix fuels in boiling water reactors. By incorporating plutonium with resonance nuclides, such as Am, Np and Er, in the A-site of pyrochlore, the kinfvs. burn-up curves are shown to be similar to those of UO2, although the Doppler coefficients are less negative than UO2. The Pu depletion rates are 88–90% (239Pu) and 54–58% (total Pu) when the inert matrix fuels experience a burn-up equivalent of 45 GWd/tHM UO2. Because of the high thermal conductivity of MgO, the center-line temperatures of the MgO–pyrochlore composites at 44.0 kW/m are lower than those of UO2 pellets. After burn-up, the A-site cation composition is 15–35 at.% lower than that of the B-site cations in pyrochlore (e.g., A1.84B2.17O7.00) due to the fission of Pu in the A-site and the presence of fission product elements in the A- and B-sites of the pyrochlore structure.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , ,