Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1568068 | Journal of Nuclear Materials | 2009 | 8 Pages |
The investigations on the precipitate phases in a 9%Cr ferritic/martensitic steel under different normalization conditions have been made by using a transmission electron microscope and an energy-dispersive X-ray spectroscopy. Hot-rolled steel samples were normalized at 1050–1200 °C for 1–2 h followed by an air cooling to room temperature. MN vanadium nitride precipitates with a plate-like morphology and a chemical formula of about (V0.4Nb0.4Cr0.2)N have been observed at triple junctions, grain boundaries and within matrix in the steel samples normalized at 1050–1150 °C for 1–2 h, but they were dissolved out at 1200 °C within 1 h. Vanadium nitride is a stable phase at 1050 °C according to thermocalc prediction of equilibrium phases in the steel. With increasing normalizing temperature and time, there was no a striking change in the chemical composition of metallic elements in the MN phase, but a considerable increase in the size of the MN precipitate.