Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1568529 | Journal of Nuclear Materials | 2008 | 9 Pages |
Abstract
The microstructure of thermally grown oxides (TGO) and the creep properties of alloy 617 were investigated. Oxidation and creep tests were performed on 100 μm thick foils at 800-1000 °C in air environment, while the thickness of TGO was monitored in situ. According to energy dispersive X-ray (EDX) mapping micrographs observation, superficial dense oxides, chromia (Cr2O3), which was thermodynamically unstable at 1000 °C, and discrete internal oxides, alumina (α-Al2O3), were found. Consequently, the weight of the foil specimen decreased due to the spalling and volatilization of the Cr2O3 oxide layer after an initial weight-gaining. Secondary and tertiary creeps were observed at 800 °C, while the primary, secondary and tertiary creeps were observed at 1000 °C. Dynamic recrystallization occurred at 800 °C and 900 °C, while partial dynamic recrystallization at 1000 °C. The apparent activation energy, Qapp, for the creep deformation was 271 kJ/mol, which was independent of the applied stress.
Related Topics
Physical Sciences and Engineering
Energy
Nuclear Energy and Engineering
Authors
S.K. Sharma, G.D. Ko, F.X. Li, K.J. Kang,