Article ID Journal Published Year Pages File Type
1568539 Journal of Nuclear Materials 2008 9 Pages PDF
Abstract

Fracture behavior of cold-worked 316 stainless steels irradiated up to 73 dpa in a pressurized water reactor was investigated by impact testing at −196, 30 and 150 °C, and by conventional tensile and slow tensile testing at 30 and 320 °C. In impact tests, brittle IG mode was dominant at −196 °C at doses higher than 11 dpa accompanying significant decrease in absorbed energy. The mixed IG mode, which was characterized by isolated grain facets in ductile dimples, appeared at 30 and 150 °C whereas the fracture occurred macroscopically in a ductile manner. The sensitivity to IG or mixed IG mode was more pronounced for higher dose and lower test temperature. In uniaxial tensile tests, IG mode at a slow strain rate appeared only at 320 °C whereas mixed IG mode appeared at both 30 and 320 °C at a fast strain rate. A compilation of the results and literature data suggested that IG fracture exists in two different conditions, low-temperature high-strain-rate (LTHR) and high-temperature low-strain-rate (HTLR) conditions. These two conditions for IG fracture likely correspond to two different deformation modes, twining and channeling.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , ,