Article ID Journal Published Year Pages File Type
1569090 Journal of Nuclear Materials 2007 16 Pages PDF
Abstract

Atom probe tomography has played a key role in the understanding of the embrittlement of neutron irradiated reactor pressure vessel steels through the atomic level characterization of the microstructure. Atom probe tomography has been used to demonstrate the importance of the post weld stress relief treatment in reducing the matrix copper content in high copper alloys, the formation of ∼2-nm-diameter copper-, nickel-, manganese- and silicon-enriched precipitates during neutron irradiation in copper containing RPV steels, and the coarsening of these precipitates during post irradiation heat treatments. Atom probe tomography has been used to detect ∼2-nm-diameter nickel-, silicon- and manganese-enriched clusters in neutron irradiated low copper and copper free alloys. Atom probe tomography has also been used to quantify solute segregation to, and precipitation on, dislocations and grain boundaries.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, ,