Article ID Journal Published Year Pages File Type
1569824 Journal of Nuclear Materials 2006 13 Pages PDF
Abstract
A behavior model of nuclear fuel kernels in the pelletizing process was developed to predict the microstructure of (Th,5%U)O2 sintered pellets. Methods, equipments and components were developed in order to measure the density, the specific surface area and the crushing strength of the kernels and produce fuel pellets. It enables a correlation between the kernels properties and the microstructure, density and open porosity that were obtained in the fuel pellet produced with these kernels. It was possible to obtain a mathematical expression that allows one to calculate, from the kernel density and specific surface, the density that will be obtained in the fuel pellet for each compactation pressure value. The investigation showed which kernels properties are desired to obtain fuel pellets that satisfy the quality requirements for a stable performance in a power reactor. This model has been validated by experimental results and fuel pellets were obtained with an optimized microstructure that satisfies the fuel specification for an in-pile stable behavior.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, ,