Article ID Journal Published Year Pages File Type
1569836 Journal of Nuclear Materials 2006 16 Pages PDF
Abstract

Kinetics of radiation induced segregation and precipitation in binary alloys are studied by Monte Carlo simulations. The simulations are based on a simple atomic model of diffusion under electron irradiation, which takes into account the creation of point defects, the recombination of close vacancy–interstitial pairs and the point defect annihilation at sinks. They can reproduce the coupling between point defect fluxes towards sinks and atomic fluxes, which controls the segregation tendency. In pure metals and ideal solid solutions, the Monte Carlo results are found to be in very good agreement with classical models based on rate equations. In alloys with an unmixing tendency, we show how the interaction between the point defect distribution, the solute segregation and the precipitation driving force can generate complex microstructural evolutions, which depend on the very details of atomic-scale diffusion properties.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
,