Article ID Journal Published Year Pages File Type
1569842 Journal of Nuclear Materials 2006 10 Pages PDF
Abstract

The Fe–Cu system is of relevance to the nuclear industry because of the deleterious consequences of Cu precipitates in the mechanical properties of Fe. Several sets of classical potentials are used in molecular dynamics simulations studies of this system, in particular that proposed by Ludwig et al. [M. Ludwig, D. Farkas, D. Pedraza, S. Schmauder, Model. Simul. Mater. Sci. Eng. 6 (1998) 19]. In this work we extract thermodynamic information from this interatomic potential. We obtain equilibrium phase diagram and find a reasonable agreement with the experimental phases in the regions of relevance to radiation damage studies. We compare the results with the predicted phase diagram based on other potential, as calculated in previous work. We discuss the disagreements found between the phase diagram calculated here and experimental results, focusing on the pure components and discuss the applicability of these potentials. Improved potentials, primarily for the pure components, should be developed to account for proper phase stability in the solid phase up to melting. Finally we suggest an approach to improve existing potentials for this system.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , ,