Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1569884 | Journal of Nuclear Materials | 2006 | 10 Pages |
The destruction process of large non-truncated stacking fault tetrahedra (SFTs) induced by gliding dislocations was examined by in situ transmission electron microscope straining experiments. Three different destruction processes were observed: a triangular Frank loop remained after the collapse (Type 1), the whole SFT was incorporated into a gliding dislocation as multiple super jog segments (Type 2), and an apex portion of the original SFT remained as a smaller SFT while the base portion was annihilated (Type 3). The remnants of Type 1 and 2 destruction processes were similar to those of previous models proposed by Kimura, indicating that these processes are based on dislocation reactions as assumed in Kimura models. On contrary, the Type 3 process, which was entirely different from Kimura models, is occasionally accompanied by vacancy migration.