Article ID Journal Published Year Pages File Type
1570034 Journal of Nuclear Materials 2006 9 Pages PDF
Abstract

Molecular dynamics (MD) simulations were performed using Born–Mayer–Huggins interatomic potentials with partially ionic model in order to evaluate the thermal conductivity of zirconia-based inert matrix fuel (IMF). The thermal conductivity was calculated at the equilibrium condition based on Green–Kubo theory and phenomenological equations. For ErxYyMzZr1−x−y−zO2−(x+y)/2 (where M = Ce or Pu), the thermal conductivity decreased with increase of y because of the presence of oxygen vacancies as the thermal resistance. It also slightly decreased with increase of z and temperature. However, significant difference could not be found in the thermal conductivity between Ce- and Pu-doped zirconia. The MD thermal conductivity of IMF was in good agreement with the literature data. Concerning the phenomenological coefficients, the cross-coupling effect between energy and charge fluxes was clearly observed at low z value and high temperatures for such zirconia systems.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , ,