Article ID Journal Published Year Pages File Type
1570094 Journal of Nuclear Materials 2006 9 Pages PDF
Abstract

Grain boundary engineering (GBE) was applied to INCOLOY alloy 800H by means of thermomechanical processing. The oxidation behavior of GBE-treated alloy 800H exposed in supercritical water (SCW) with 25 ppb dissolved oxygen at 500 °C and 25 MPa was significantly improved as compared to 800H in the annealed condition. Gravimetry, optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) were employed in this study to analyze the oxidation behavior of control (annealed) and GBE-treated samples. GBE improves the protective oxidation behavior by enhancing spallation resistance and reducing oxidation rate. Spallation resistance correlates with a reduction in texture of the oxide layers.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , ,