Article ID Journal Published Year Pages File Type
1573 Acta Biomaterialia 2008 10 Pages PDF
Abstract

The onset of scarring after injury may impede the regeneration and functional recovery of skeletal muscle. Matrix metalloproteinase-1 (MMP-1) hydrolyzes type I collagen and thus may improve muscle regeneration by resolving fibrotic tissue. We examined the effect of recombinant human MMP-1 on fibrosis in the lacerated gastrocnemius muscle of NOD/scid mice, allowing treatment potential to be ascertained in isolation from immune response. The efficacy of proMMP-1 and active MMP-1 were compared with or without poly(ethylene glycol) (PEG) modification, which was intended to increase the enzyme’s stability. Active MMP-1 was most effective in reducing fibrosis, although treatment with proMMP-1 was also beneficial relative to controls. PEG-modified MMP-1 had minimal activity in vivo, despite retaining activity towards a thioester substrate. Moreover, the modified enzyme was inactivated by trypsin and subtilisin at rates comparable to that of native MMP-1. These results and those of computational structural studies suggest that modification occurs at the C-terminal hemopexin domain of MMP-1, which plays a critical role in collagen turnover. Site-specific modifications that spares catalytic and substrate binding sites while protecting susceptible proteolytic digestion sites may be beneficial. We conclude that active MMP-1 can effectively reduce muscle scarring and that its activity is related to the ability of the enzyme to digest collagen, thereby facilitating remodeling of the injured muscle.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,