Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
16289 | Current Opinion in Biotechnology | 2010 | 16 Pages |
The information encoded in the base sequence of DNA provides instructions for the structural and functional properties of this biopolymer. Structural information includes the formation of duplexes, supramolecular crossover tiles, G-quadruplexes, i-motifs, base-metal-ion complexes, and more. Functional information encoded in the DNA is reflected by specific binding (aptamers) or catalytic properties (DNAzymes). Recent advances in tailoring supramolecular DNA structures for DNA-based machinery and for amplified biosensing are reviewed. Different DNA machines that perform ‘tweezer’, ‘walker’ or ‘metronome’ functions are discussed, and the control of macroscopic surface properties or the motility of micro-objects by molecular DNA devices is introduced. Furthermore, the design of DNA machines for the ultrasensitive detection of DNA, low-molecular-weight substrates, and macromolecules is discussed. Supramolecular aptamer and DNAzyme structures are used as molecular tools for amplified sensing.