Article ID Journal Published Year Pages File Type
1630933 Materials Today: Proceedings 2016 8 Pages PDF
Abstract

We synthetized carbon dots by a pyrolitic method, and studied their photoluminescence in aqueous environment and upon trapping in a solid matrix. To this aim, we devised a facile procedure allowing to embed the dots in amorphous SiO2, without the need of any pre-functionalization of the nanoparticles, and capable of yielding a brightly photoluminescent monolith. Experimental data reveal a remarkable similarity between the emission properties of carbon dots in water and in SiO2, suggesting that the chromophores responsible of the photoluminescence undergo only weak interactions with the environment. Time-resolved photoluminescence data reveal that the typical photoluminescence tunability of these dots mostly arises, in the present case, from the co-existence of two independent emission bands. These two signals have different emission peak positions (2.8-2.9 and 2.2-2.3 eV respectively) and decay lifetimes (7.0 and 9.0 ns respectively), while their intensity ratio is controlled by the excitation wavelength.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys