Article ID Journal Published Year Pages File Type
1662 Acta Biomaterialia 2010 11 Pages PDF
Abstract

Our objective was to evaluate the cytocompatibility and biocompatibility of biphasic calcium phosphate (BCP) in the nasal respiratory airway. In vitro, the attachment rate was quantified on BCP disks with normal human epithelial cells at 1, 3 and 24 h by determining N-acetyl β-d-hexosaminidase activity. Proliferative activity of cells was indirectly assessed by MTT assay at 3, 9, 15 and 21 days. Plastic surfaces were used as positive control. In vivo, 15 rabbits underwent anterior nasal septum perforation and 10 septa were repaired with BCP disks. Five non-implanted animals were sacrificed at 3 months. Two groups of five implanted animals were sacrificed at 1 and 2 months. The surface of new airway mucosa covering BCP disks was evaluated macroscopically. During both steps, light microscopy, immunohistochemistry and scanning electron microscopy were performed. Statistical analysis was performed with the Mann–Whitney U-test. In vitro, at 1 and 3 h, the attachment rates were significantly better than on the plastic surface (p < 10−2). Mitochondrial activity increased on both surfaces but began 6 days later than on plastic. After 21 days of culture, cells were confluent and formed a monolayer covering the implant even in the bottom of the pores. In vivo, no perforations in the control group closed spontaneously. The mean rate of closure was 63% in the 1 month group and 64% in the 2 month group (p > 0.05). Implants were invaded by inflammatory reaction covered by incomplete differentiated respiratory epithelium. Throughout the study, all immunohistochemical findings remained positive. These data suggest a good affinity between BCP and nasal epithelial cells. BCP could be used to rebuild nasal septa.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , ,