Article ID Journal Published Year Pages File Type
1703520 Applied Mathematical Modelling 2014 12 Pages PDF
Abstract

This study devotes to incorporating a nonmonotone strategy with an automatically adjusted trust-region radius to propose a more efficient hybrid of trust-region approaches for unconstrained optimization. The primary objective of the paper is to introduce a more relaxed trust-region approach based on a novel extension in trust-region ratio and radius. The next aim is to employ stronger nonmonotone strategies, i.e. bigger trust-region ratios, far from the optimizer and weaker nonmonotone strategies, i.e. smaller trust-region ratios, close to the optimizer. The global convergence to first-order stationary points as well as the local superlinear and quadratic convergence rates are also proved under some reasonable conditions. Some preliminary numerical results and comparisons are also reported.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,