Article ID Journal Published Year Pages File Type
17037 Enzyme and Microbial Technology 2013 6 Pages PDF
Abstract

•Silencing of cre1 resulted in derepression of cellulase gene expression.•Silencing of cre1 led to significantly enhanced enzyme production capability.•CREI acted as a repressor of xyr1 transcription under inducing conditions.•RNAi is a feasible method for improving cellulase productivity in Trichoderma koningii.

The cellulase and xylanase genes of filamentous Trichoderma fungi exist under carbon catabolite repression mediated by the regulator carbon catabolite repressor (CREI). Our objective was to find the role of CREI in a cellulase-hyperproducing mutant of Trichoderma koningii, and address whether enzyme production can be further improved by silencing the cre1 gene. cre1 partially silenced strains were constructed to improve enzyme production in T. koningii YC01, a cellulase-hyperproducing mutant. Silencing of cre1 resulted in derepression of cellulase gene expression in glucose-based cultivation. The cre1 interference strain C313 produced 2.1-, 1.4-, 0.8-, and 0.8-fold higher amounts of filter paper activity, β-1,4-exoglucanase activity (ρ-nitrophenyl-β-d-cellobioside as substrate), β-1,4-endoglucanase activity (sodium carboxymethyl cellulose as substrate), and xylanase activity, respectively, than the control strain, suggesting that silencing of cre1 resulted in enhanced enzyme production capability. In addition, downregulation of cre1 resulted in elevated expression of another regulator of xylanase and cellulase expression, xyr1, indicating that CREI also acted as a repressor of xyr1 transcription in T. koningii under inducing conditions. These results show that RNAi is a feasible method for analyzing the regulatory mechanisms of gene expression and improving xylanase and cellulase productivity in T. koningii.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,