Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1703795 | Applied Mathematical Modelling | 2014 | 13 Pages |
We introduce the time constrained maximal covering salesman problem (TCMCSP) which is the generalization of the covering salesman and orienting problems. In this problem, we are given a set of vertices including a central depot, customer and facility vertices where each facility can supply the demand of some customers within its pre-determined coverage distance. Starting from the depot, the goal is to maximize the total number of covered customers by constructing a length constrained Hamiltonian cycle over a subset of facilities. We propose several mathematical programming models for the studied problem followed by a heuristic algorithm. The developed algorithm takes advantage of different procedures including swap, deletion, extraction-insertion and perturbation. Finally, an integer linear programming based improvement technique is designed to try to improve the quality of the solutions. Extensive computational experiments on a set of randomly generated instances indicate the effectiveness of the algorithm.