Article ID Journal Published Year Pages File Type
1704106 Applied Mathematical Modelling 2014 11 Pages PDF
Abstract

We investigate the existence of “front” solutions of the saturation equation of two-phase flow in porous media. By front solution we mean a monotonic solution connecting two different saturations. The Brooks–Corey and the van Genuchten models are used to describe the relative-permeability – and capillary pressure–saturation relationships. We show that two classes of front solutions exist: self-similar front solutions and travelling-wave front solutions. Self-similar front solutions exist only for horizontal displacements of fluids (without gravity). However, travelling-wave front solutions exist for both horizontal and vertical (including gravity) displacements. The stability of front solutions is confirmed numerically.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
,