Article ID Journal Published Year Pages File Type
1704963 Applied Mathematical Modelling 2012 13 Pages PDF
Abstract

Stress analysis is carried out in a graded orthotropic layer containing a screw dislocation undergoing time-harmonic deformation. Energy dissipation in the layer is modeled by viscous damping. The stress fields are Cauchy singular at the location of dislocation. The dislocation solution is utilized to derive integral equations for multiple interacting cracks with any location and orientation in the layer. These equations are solved numerically thereby obtaining the dislocation density function on the crack surfaces and stress intensity factors of cracks. The dependencies of stress intensity factors of cracks on the excitation frequency of applied traction and material properties of the layer are investigated. The analysis allows the determination of natural frequencies of a cracked layer. Furthermore, the interactions of two cracks having various configurations are studied.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,