Article ID Journal Published Year Pages File Type
17060 Enzyme and Microbial Technology 2014 6 Pages PDF
Abstract

•A puerarin-glycosylating strain of Lysinibacillus fusiformis was isolated.•Two glycosides of puerarin were produced.•Puerarin-7-O-fructoside has improved water solubility and antioxidant activity.•The strain is organic solvent-tolerant.•Under optimal conditions, the conversion rate of puerarin reached 97.6 ± 2.3%.

A bacterial strain able to glycosylate the plant natural product puerarin was isolated from local soil in Nanjing, China. It was identified as Lysinibacillus fusiformis, and deposited in China General Microbiological Culture Collection (CGMCC) under accession number 4913. Incubation of this strain with puerarin led to efficient production (91.6% conversation rate) of puerarin-7-O-fructoside, a derivative that possesses improved water solubility and antioxidant activity. A minor product puerarin-7-O-isomaltoside was also produced in small amounts, with a conversion rate of less than 1% after 48-h reaction. Both products were characterized based on the spectral data. Among the four tested sugars, sucrose (92.6% conversion rate of puerarin) is the best glycosyl donor for L. fusiformis CGMCC 4913, followed by maltose (39.8% conversion rate of puerarin), while glucose and fructose are not appropriate donors for this biotransformation process. L. fusiformis CGMCC 4913 can survive in the presence of 10% (v/v) organic solvents such as methanol, ethanol, toluene, cyclohexane, and dimethyl sulfoxide. The biotransformation efficiency of puerarin was increased 2-fold in the presence of 10% ethanol at 12 h compared to the transformation solution without ethanol. The optimum pH and substrate concentration are 8.0 and 4 g/L, respectively. Under the optimal conditions, the final conversion rate of puerarin reached 97.6 ± 2.3% at 48 h in the presence of 10% ethanol. Therefore, L. fusiformis CGMCC 4913 represents a new and efficient biocatalyst for the biotransformation of puerarin.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , ,